US009104497B2

a2 United States Patent 10) Patent No.: US 9,104,497 B2
Mortazavi (45) Date of Patent: Aug. 11, 2015
(54) METHOD AND SYSTEM FOR WORK LOAD (56) References Cited
BALANCING

U.S. PATENT DOCUMENTS
(71) Applicant: YAHOO! INC., Sunnyvale, CA (US)

2010/0240373 Al* 9/2010 Jietalcccoevvvrnen 455/436
. : 2013/0073552 Al* 3/2013 Rangwalaetal. 707/737
(72) Inventor: Masood Mortazavi, San Jose, CA (US) 2014/0046956 Al* 22014 Zengeretal. 707/748
(73) Assignee: Yahoo! Inc., Sunnyvale, CA (US) * cited by examiner
(*) Notice: Subject to any disclaimer, the term of this . . .
patent is extended or adjusted under 35 Primary Examiner — Dustin Nguyen
U.S.C. 154(b) by 273 days. Assistant Examiner — Joel Mesa
(74) Attorney, Agent, or Firm — Pillsbury Winthrop Shaw
(21) Appl. No.: 13/671,046 Pittman LLP
(22) Filed: Nowv. 7, 2012 (57) ABSTRACT
(65) Prior Publication Data Method, system, and programs for balancing work load in a
US 2014/0129715 Al May 8, 2014 distributed system. A plurality of resource units in the distrib-
uted system are ranked based a plurality of multi-dimensional
(51) Int.Cl. load metrics determined from each of the plurality of resource
GOGF 15/173 (2006.01) units. The plurality of resource units are divided into a plu-
GO6F 9/50 (2006.01) rality of resource unit groups based on the ranking of the
HO4L 29/08 (2006.01) plurality of resource units. At least one pair of resource unit
(52) U.S.CL groups is formed. Each of the at least one pair of resource unit
CPC ... GOG6F 9/5083 (2013.01); HO4L 29/08144 groups is assigned with a probability of load balancing action.
(2013.01) For each pair of resource unit groups, a load balancing action
(58) Field of Classification Search is determined based on the assigned probability of load bal-
CPC .o GOG6F 9/5083; HO4L 29/08144 ancing action.
USPC e 709/226, 223
See application file for complete search history. 18 Claims, 19 Drawing Sheets

PleRPZ | »Pn

US 9,104,497 B2

Sheet 1 of 19

Aug. 11, 2015

U.S. Patent

(v)1 81y

US 9,104,497 B2

Sheet 2 0f 19

Aug. 11, 2015

U.S. Patent

CHEE

.
¥
‘
H
H
L]
3
H

X

A

US 9,104,497 B2

Sheet 3 0f 19

Aug. 11, 2015

U.S. Patent

791

U SnON

- {pun obriog "B e}
Z-U BUN BoanGsey

(U Hun mﬁmwwmm

n{m / & »h\‘«.,\m
AN U-20¢ L0
¢ 1y
gt i \.\/&QKQ HOg
L RS /
3
7 i N
IBHOHUND w rﬁ Jafrugw
RO SUBUAC w xwr wsubizee pecy
\?W m\,&
0z FSOH 902
' s ouensipen | SRR HONOY HofY
Bt \\
/ ¥
™y
" ‘xx {sun abrioss "8 ,mw « (pun Busssooud ey
78 N SUN0SHY LB D 80059y
¢ . ‘ 7
o207 & spoN o-obes
7Y
20

US 9,104,497 B2

Sheet 4 of 19

Aug. 11, 2015

U.S. Patent

{Spun BUINOSSI} WOISAR PBICIISI(

¢ B1g

R
(! _,.v«"/,'
s

SUORIE
Buouemyg
Py

ebBeupi
wmiubiese peo

SO PRO
RO

V4

sinpow Buisueg

\(

208
spnpow voBInduwoD | e e

\() BNpoW

POE uoeziugdQ
npow Bupiuey < {Mum} ******* o
/ + /

ﬁm&v/ _, aie

&

7

JNPOW LONDY

SBORUGS DES DIUBUAL

US 9,104,497 B2

Sheet 5 0f 19

Aug. 11, 2015

U.S. Patent

(¥) v 814

ﬁm%m& ,
QOUBIABD RO %

re
Ziy Buisnipy
Bunesfios i yoes) uje peoy
, ol 587 |
% 3 i
aow,.w%m@ Mﬁ i . i

A%m LOBE) LIS peot

3
!

y

Bunnuueieg ,
< N/m &
Ot
| PuuBUBRADROT uBaw DO
o o
v Bunenms b
{
{511 18] SOLISW DBD] IPUCHBUSLAL-1HOR
H
Y
g

US 9,104,497 B2

Sheet 6 of 19

Aug. 11, 2015

U.S. Patent

{qQ) + 31

{1y yors)
BOURIAGD DR

Hunsnipy

i 3

" Gunestion 1 OB ueL nmgw_

[UIBHKS 1577
F 3 \/\
Oiv

{11y yoes) DUjEW pROT

,\).\V &
20

SLURG BIRIBNIS Y

o, |

Busunaes

o

M UBHDSUL DBOT w

F 3 o,
I
viv

Bunprogry

(SFYM HE) SDUISW REOT IBUCISURUIR-TION

4 K

b

US 9,104,497 B2

Sheet 7 of 19

Aug. 11, 2015

U.S. Patent

(3) 814

[y uoes)
(AR} soUBIABR DBOT

I
gy

Bununs gfip

SPLEG SHUSOIDY

ofy |

BunnieRg

Y

_mﬁ& YOBS} DLEW pBDT

YA

UBIDeW pROT w

3 \\/\

rib

Busmnioen

(S B8] SOUBLE PED) RUCISUSLUIIEIN

US 9,104,497 B2

Sheet 8 of 19

Aug. 11, 2015

U.S. Patent

et

T <L

bt

N
SRR S

§ 81

e 2 e e 2 e e s e Sy

<4
2

{1

v

f1d

i

e w

..,.,\.‘::),,.M,.“ o et oo e

e

,

e s S ey e e s e g

i
*

H
H
2
i
3
E
3
3
2
<
3
H
]
H
£
3
2
3
H
H
<
2
£
3
E

e
i

Bunjues
peot

B e

US 9,104,497 B2

Sheet 9 of 19

Aug. 11, 2015

U.S. Patent

e e e o e e e e c” p m Maﬂvﬂ» Ww@amwmwmﬁm
e . arof fi : m oo
arnob fid N m 1
Uef ; :
Ny
SUDIDE . fr, 17 i \m%immiiiiiiiié "
Buou ssbeueus ¥ ‘ i PP LI TR R R R R R n
SHIOUSEG) ewubisse peoT) Aﬁ : dnoif ny miq e Y :
pEOT : W | !
; dnesf * e M
it M
: drob iy ;
W . s m)wm M
: drioafs 1y Y y; L pod pROESAD :
7 m bed : A
N\\\/ Hev v dimie e wie s se s ae e - Ne e se e ae o ne e el e Ne e el e Geis ¢ s 0 e mmm

Burues
pRo

US 9,104,497 B2

Sheet 10 of 19

Aug. 11, 2015

U.S. Patent

L 814

uoe Buoueey peo 1o Aupgearud
poubisse o UD peseq uoe Bupusey pen
g sauneep ‘sdnoub pun 80unosal o ired Yors iy

8OL

|

uioe Bunugien ped 10 Aupgeand g upm pautisse
st sorwa BN 80UN08es 0 yed Bu0 188RY 18 8L JO e
Lhaseuae ‘sdneaB yun eounnsss jo ied BUD 19BH 1B ULID Y

|

SN 80IN0SS Jo Appanid a3 10
Burausg 43 U0 pasey sadnosB pun sunossl 1o
Appsrud B 01 SHUN 80IN0SSL 10 Aumanid syl spialg

\Q
2§74

M

SPUN BOUN0SHS 10 AJBnd 84Ul JO UDES WD) DeLILLINGD
STHLAEL PEG BUDISUSILLED-IINILL O Aupeind ® peseg

/ Vi umieAs pRInGUISID B4 L SHUN SnNDSel Jo Aseinid B ey

AL

US 9,104,497 B2

Sheet 11 of 19

Aug. 11, 2015

U.S. Patent

(v} g 81y

Aoiiod BLsueien DEGy puUB 80lLous
DEO] FEUCISLIGUT-TIL O3 UD Resei
ppolu peo monsnes mouod sundo

44y

£
74

&

wimaad U suonoe BUouBRBg PR tInMRd

&

-~

¢

uoipe Sunusieg peol 10 Asligeaoud sy
uo pasey 2dncill wun anmnosw 1o sed
L0ue 30¢ sUoioR BUIBURIE] DRO SUILLISIRGT

gig

A

N
.\

scnoal pun enaneess o sed UoES O
uose Bunusied peol i Auigeqoud ulissy

&

sOnoAS pun e3noRes & siied o4y

L

Bupjug: SUE UG peseq sdnoi jun

ponssd Bl B ungie uonoe Bumueeg peol B
o} pepdde Amnoineld LN SIINOERS SATURNY

=

»

Die

AR

BN ORINCSHS OB JO OLIMASD
£R20] B41) UG DOSEG SHUN S0M06H! URY

AP

.

SIS DEO| SRS 158 DUR DUBY ol IBdD
(UL S UO DOSEY JUN 8BIN0SE.
LOBS i) OIUIAGE DB € endiues

k

GOURLEA DEO} DUR UEBW DBO] S} UD pBsRY
pueg UonERds BILOU B SBRuesg

E Y

SOLAGUI DRG] BUOISUSBIR-YINGE MY UD DBsEG
SOUBLIEA DR DU UBSW DD} B SN

PAY:?
N\/\\

*

ST SLINCSRL LWIOY
SOLIGL) DEO] FPUCISUBLED-INW BAISD0Y

408

SFREOERI QRY IR SUNDESF St e

US 9,104,497 B2

Sheet 12 of 19

Aug. 11, 2015

U.S. Patent

{q)g 514

Aonod Bunugipy pEO| puUg SHBU
PEO BUGIBUSUID-ITIL S U pageq

{BROL pBOY BN

neie eaoB saund)

oG BUE ¥ s uonee Suenusisg peol B

o} paydide Asnasid JUN SN0SES PADLUSY

&

¢
b4

E 3

N\x\

mheied U suonor SUOURIBG DEOE ULIOLSY

PLIN SLINGSOL UORS JO SOUBIASD
DEO] B U0 DOSBG SHUN SUN0SDE HUBY

3

078

&

uoine Busueeg peO 30 Anpgegoud suy

Lo pasedg sdnosb

P 80Un0sel jo sud

Lo) SUClDE BUDURBEY DBO| BUILLIeB

SR DROI SUIRIME 158 DUB SpUBY
snuBsed B UG PESRE BUN OIS

UOES 10} @OURIABD DEO] B andluoy
- 3

3

UBIDS DBO] L} B0 PBSEY
SOUBY AMIuesd sURLLISIBQ

g Jun eonosal jo aed YoBs o)
unine Sucueieg e o Angsaoad ubissy

b.

4

3

SOLABLY DEDI IRUCISUSUAR-IIN 8 U0 DB3RY
UBIDSU PED] B SIINIRD

scdncaf yun sounosas Jo shed yuog

E

L

ST QRINCHSS LD
SRS PRO] IRUCISUBIUIR-ITIM BAISNEY

4
e
&0

Sunues ey uo poseg sdnal gun
BITIOSSI Ol SHUN BLINCSHS HU) DI

US 9,104,497 B2

Sheet 13 of 19

Aug. 11, 2015

U.S. Patent

() g 814

AOnGH BUSUBIBE DO pUB §51B1
PED] IBUDIBUSLID-IINW 84 UD DesEy
[epoul Py EoRsIEIS jegoB eznundo

popad eu B Wyis uonse Buoueeg praj g
&3 pedde Asnoasld BN S0MNOSH RAOWSY

oig
\)&

A

&

jepeied w suooe DUDURBY PROY BUOLS.

YU QOINOSSS UOBS IO SOUBASD
DRO] B4} UG DOSEG SHUN STUN0S8 YUBY

0l

w

yonor Buisueieg pEG 0 Appnegosd &g
40 praseg sdncsl Jun eoanosss o sad
yore 4o} sutine SusuBRg DB SUILLLIRIBG

sonewins 1bip Buisn spueg
sfsned s UO DBSEY N SIINOSed

Yors o) Aeue ajnusnisd nRo B sindwio

08
~J

3

E 3

UBIDSIU DeD] 8w} UD Desey

Spleg enueMsd BULLIGING

a8
7

sOnCD YN STINCESY 0 iBd yowe ot
uonoe Sunureg peot o Apuegond ufissy

E 3

-~

SRNSUL PROY BUGISUSWID-IMU B4} LD DISEY
LUBRIDBUL DO B BIBIN0IRD

¥Z8
P

sdroB pun 8onnssl o anrd Lo

&

A

SPLIN SNBSS WO
SOUIBLI PEO] IBUCISUSLID- N BAIBDEN

008

Suas i U0 pereg sdnosd pun
SRNOSHI ORY SN S0N0SSI BU SRR

US 9,104,497 B2

Sheet 14 of 19

Aug. 11, 2015

U.S. Patent

/™

ATHOr DLEDURIBN DED DUB SHUeW
PEC] BUCISUSUUR-HINLL SLU LD RHEBY
PO pro] eogsnEs paoll eziundn

&

.\\/&..

Esded W suonon BunueRg DEOJ LUGUS

{78

*

ey

gig

uonoe Buoueieg peot 10 Aaegosd sy
UG paseq sdnoafl pun swunosss jo sed
yoes 10} suonoe Supumiey pen; suiuLgeg

A

zdnoaf} nun sTanosss 10 aed Unes O
uonoe Bubmiumen pent o Apigennyd ubissy

*

Y

sanoif Jun somosal 1o sued Luod

/
Pig

&

Zig

Bunpazs s uo poseq sadnel pun
AOMISAL ORA S S0INCSRS B} SPING

{p)g 81y

7S

poued g B ugpM uae Buisuerg
ROt B O poidde Asnonesd Bun SIN0SHS SAOWSY

18

E)

AN BOMNOKRL YDBS JO] AOLIBIASD DB 8L DUR SaXE
pro jpdinuld 811 UD DESEY SHUN SLINOES] HUEY

ey

&

~,

STINS PO PUCISUBWID-IITRY BU) IO UCUNGLISID &
L0 pasEg sexe proj edouud awuusag

Favs
FAS Y

\/\

&

Q0%

SR AT DES] BN USRI &
DLIB BP0 PO BonsiIes 1Ramif B U pesey
PUN SOIIOSS; LOBS I0] SOUBIABD DRO & ainduion

&

SN BOINOSRL WG
SIS PROH IBUCISUSLUIID-TINW SAB09Y

US 9,104,497 B2

Sheet 15 of 19

Aug. 11, 2015

U.S. Patent

Py WO Ndo
\\xe\ & \3&..., FaN \\{ £
218 016 #08 @
V4 K W4
N O \/\. 4
906 .WP
4 7 o
WO
HIORIBN —
2 W0] , o~ et
7~ / M o
2086 /
ROB
0086

US 9,104,497 B2

Sheet 16 of 19

Aug. 11, 2015

U.S. Patent

(¢} 91 "O14

: .
$ M
3 4
,m 2
N ;
: :
: : acueEs pengx o
1 : : ~ GRS PO
W M
; ;
: :
alu “ m
< : UE PO
o : ; an
HON : : i
¥ 4 ..\
3 3 P,
i 4
; LA} IO MODURSA ; \
L3 3
; * P/ SAUBLEA DB X FO
1 + BB PROTY
,mx xm mv ‘uq\vxﬁ
¥
el x\
57 3
11 40 pRGY w\\xu \ SR wmaw
Tt FUBHNG 198
3 i HITRE mmam
i FULER 1983
W
L 4
UEIBUBRD PROT

US 9,104,497 B2

Sheet 17 of 19

Aug. 11, 2015

U.S. Patent

() 01 O

g3

uBpon

%01

%E

DU O MODUA

q
3
3

TR

et g
v

a0

7 (Y5 30 PBU'Y

g SHIpIE Ry
\. SLUBHAS J3ET]

k 4
LHRURLID DRGTY

US 9,104,497 B2

Sheet 18 of 19

Aug. 11, 2015

U.S. Patent

T

5§

JRECILIOD PRO) SHUBUAQ

.\\/.\«
YOz

R

g\}/\\%&,
- //f
\\ {syun eounosal) m

H

,w WRIBAS DOINGLISIY ¢

siggeued
uongnByuos poppdn

|
m srpow |

f
S

01

x\\ FOMIOI DROTY

uoreziund(|
J

Laonanyag w Q&,m paRsan’
Az Sleourieqg peoy

US 9,104,497 B2

Sheet 19 of 19

Aug. 11, 2015

U.S. Patent

71 814

f/. z\,,\s\.\
. T v
Y dagrgis @&&K

RO} ELUOISUROD-TA
fwbesn Ngo e}
3 HOISLSRER DETY

&
)3

{alwen on B9
o UGHRUALED DB 1

US 9,104,497 B2

1

METHOD AND SYSTEM FOR WORK LOAD
BALANCING

BACKGROUND

1. Technical Field

The present teaching relates to methods, systems, and pro-
gramming for work load balancing. Particularly, the present
teaching is directed to methods, systems, and programming
for work load balancing in a distributed system.

2. Discussion of Technical Background

Distributed computing is a field of computer science that
studies distributed systems, which include multiple autono-
mous computers or parallel virtual machines that communi-
cate through a computer network, such as a computer cluster
having multiple nodes. The machines in a distributed system
interact with each other in order to achieve a common goal. In
distributed computing, a problem is divided into many tasks,
each of which is solved by one or more computers, such as the
nodes of a computer cluster. Distributed systems and appli-
cations may be applied as various paradigms, including grid
computing, utility computing, edge computing, and cloud
computing by which users may access the server resources
using a computer, netbook, tablet, smart phone, or other
device through the Internet.

Most distributed systems serving web applications, such as
cloud storage and cloud computing systems, behave as
dynamic systems with a significant amount of “noise” super-
imposed on periodic behavior and sudden variations due to
garbage collection, scans, etc. In highly scalable and distrib-
uted data systems, balancing work load becomes a significant
problem because data and query processing must be distrib-
uted over existing physical resources. Data storage and pro-
cessing must also be redistributed as resource configuration
changes due to resource optimization and churn events such
as physical resource failures, physical resource commission-
ing, and decommissioning. Finally, application-specific
deployment, changes, and processing might give rise to load
imbalances, which need to be corrected.

Some known solutions of work load balancing in a distrib-
uted system utilize a calculation-based control method. The
calculation-based control method is based on statically
assigning work assignments to sequenced physical resources.
These know solutions, however, lack global registration
mechanisms that can monitor an overall work load distribu-
tion among the entire system and dynamically balance the
work load based on predefined balancing policies.

Moreover, existing controllers of massively scalable dis-
tributed systems are too primitive to act as dynamic governors
over a large set of possible operational modes. In other words,
the existing controllers perform balancing at the extreme
edge. However, it is impossible to know the absolutely most
optimal decision in some cases, such as when new servers are
added in generations, new servers are added incrementally,
load shifts are happened in waves, or load exchanges run in
parallel. In fact, the most optimal decision may actually
reduce the space of possible exchanges ofload among serving
resources.

Therefore, there is a need to provide a solution for auto-
matically performing dynamic work load balancing in vari-
ous highly distributed, scalable, and elastic data processing
and management systems, which aggregate large sets of
physical computers and storage resources.

SUMMARY

The present teaching relates to methods, systems, and pro-
gramming for work load balancing. Particularly, the present

10

15

20

25

30

35

40

45

50

55

60

65

2

teaching is directed to methods, systems, and programming
for work load balancing in a distributed system.

In one example, a method, implemented on at least one
machine each having at least one processor, storage, and a
communication platform connected to a network for balanc-
ing work load in a distributed system is presented. A plurality
of resource units in the distributed system are ranked based a
plurality of multi-dimensional load metrics determined from
each of the plurality of resource units. The plurality of
resource units are divided into a plurality of resource unit
groups based on the ranking of the plurality of resource units.
Atleast one pair of resource unit groups is formed. Each of the
at least one pair of resource unit groups is assigned with a
probability of load balancing action. For each pair of resource
unit groups, a load balancing action is determined based on
the assigned probability of load balancing action.

In a different example, a system for balancing work load in
a distributed system is presented, which includes a ranking
module and an action module. The ranking module is config-
ured to rank a plurality of resource units in the distributed
system based a plurality of multi-dimensional load metrics
determined from each of the plurality of resource units. The
ranking module is also configured to divide the plurality of
resource units into a plurality of resource unit groups based on
the ranking of the plurality of resource units. The action
module is configured to form a plurality of pairs of resource
unit groups. Each pair of resource unit groups is assigned with
a probability of load balancing action. The action module is
also configured to, for each pair of resource unit groups,
determine a load balancing action based on the assigned
probability of load balancing action.

Other concepts relate to software for balancing work load
in a distributed system. A software product, in accord with
this concept, includes at least one machine-readable non-
transitory medium and information carried by the medium.
The information carried by the medium may be executable
program code data regarding parameters in association with a
request or operational parameters, such as information
related to a user, a request, or a social group, etc.

In one example, a machine readable and non-transitory
medium having information recorded thereon for balancing
work load in a distributed system, wherein the information,
when read by the machine, causes the machine to perform a
series of steps. A plurality of resource units in the distributed
system are ranked based a plurality of multi-dimensional load
metrics determined from each of the plurality of resource
units. The plurality of resource units are divided into a plu-
rality of resource unit groups based on the ranking of the
plurality of resource units. At least one pair of resource unit
groups is formed. Each of the at least one pair of resource unit
groups is assigned with a probability of load balancing action.
For each pair of resource unit groups, a load balancing action
is determined based on the assigned probability of load bal-
ancing action.

BRIEF DESCRIPTION OF THE DRAWINGS

The methods, systems, and/or programming described
herein are further described in terms of exemplary embodi-
ments. These exemplary embodiments are described in detail
with reference to the drawings. These embodiments are non-
limiting exemplary embodiments, in which like reference
numerals represent similar structures throughout the several
views of the drawings, and wherein:

FIGS. 1(a) and (b) depict exemplary embodiments of a
distributed system in which work load balancing is applied,
according to different embodiments of the present teaching;

US 9,104,497 B2

3

FIG. 2 is a high level exemplary system diagram of a
system for balancing work load in a distributed system,
according to an embodiment of the present teaching;

FIG. 3 is a depiction of an exemplary dynamic load con-
troller of the system for balancing work load in a distributed
system shown in FIG. 2, according to an embodiment of the
present teaching;

FIGS. 4(a)-(c) are depictions of exemplary global statisti-
cal load models in the system for balancing work load in a
distributed system, according to different embodiments of the
present teaching;

FIG. 5 is a depiction of an exemplary resource units rank-
ing with pairs of resource unit groups, according to an
embodiment of the present teaching;

FIG. 6 is a depiction of an exemplary ranking module,
action module, and load assignment manger of the system for
balancing work load in a distributed system, according to an
embodiment of the present teaching;

FIG. 7 is a flowchart of an exemplary process of balancing
work load in a distributed system, according to an embodi-
ment of the present teaching;

FIGS. 8(a)-(d) are detailed flowcharts of exemplary pro-
cesses of balancing work load in a distributed system, accord-
ing to different embodiments of the present teaching;

FIG. 9 depicts a general computer architecture on which
the present teaching can be implemented;

FIGS. 10(a) and (b) depict examples of computing a load
deviance for a resource unit in a distributed system, according
to different embodiments of the present teaching;

FIG. 11 is a depiction of an exemplary optimization mod-
ule of the system for balancing work load in a distributed
system, according to an embodiment of the present teaching;
and

FIG. 12 depicts an example of determining one or more
principal load axes based on a distribution of a plurality of
multi-dimensional load metrics in a distributed system,
according to an embodiment of the present teaching.

DETAILED DESCRIPTION

In the following detailed description, numerous specific
details are set forth by way of examples in order to provide a
thorough understanding of the relevant teachings. However, it
should be apparent to those skilled in the art that the present
teachings may be practiced without such details. In other
instances, well known methods, procedures, systems, com-
ponents, and/or circuitry have been described at a relatively
high-level, without detail, in order to avoid unnecessarily
obscuring aspects of the present teachings.

The present disclosure describes method, system, and pro-
gramming aspects of work load balancing in a distributed
system at a global level in real-time. By incorporating tuzzi-
ness, a more robust and versatile controller is built that can
operate on the average more optimally in a larger set of
scenarios. The method and system disclosed herein combine
the execution of a set of controller rules according to a set of
assigned probabilities. In this way, it makes a larger set of
control actions possible but assigning some higher probabili-
ties than others, thereby allowing capture of some a little less
optimal load balancing decisions and allowing more load
balancing actions to run in parallel.

Additional advantages and novel features will be set forth
in part in the description which follows, and in part will
become apparent to those skilled in the art upon examination
of the following and the accompanying drawings or may be
learned by production or operation of the examples. The
advantages of the present teachings may be realized and

10

15

20

25

30

35

40

45

50

55

60

65

4

attained by practice or use of various aspects of the method-
ologies, instrumentalities and combinations set forth in the
detailed examples discussed below.

FIGS. 1(a) and 1(b) depict high level exemplary system
configurations in which work load balancing in a distributed
system can be dynamically performed, according to an
embodiment of the present teaching. In FIG. 1(a), the exem-
plary system 100 includes a host 102, a distributed system
such as a cluster 104, an operator 106, a network 108, and
users 110. The network 108 may be a single network or a
combination of different networks. For example, the network
108 may be a local area network (LAN), a wide area network
(WAN), a public network, a private network, a proprietary
network, a Public Telephone Switched Network (PSTN), the
Internet, a wireless network, a virtual network, or any com-
bination thereof. The network 108 may also include various
network access points, e.g., wired or wireless access points
such as base stations or Internet exchange points 108-q, . . .,
108-5, through which a data source may connect to the net-
work in order to transmit information via the network.

The cluster 104 in which the work load balancing to be
performed may include a plurality of nodes 104-a, 104-5, . . .
104-/,104-i, which communicate through the network 108 or
through an internal network (not shown). The nodes 104-a,
104-5, . . . 104-4, 104-i may include autonomous physical
machine, such as a server, a workstation, a desktop or laptop
computer, a tablet, a smart phone, a television, a game con-
sole, or any other suitable machine. Some or all of the nodes
104-a, 104-b, . . . 104-;, 104-i may be parallel virtual
machines implemented by either software emulation or hard-
ware virtualization. The cluster 104 may be a set of machines
owned by one entity, e.g., an enterprise, and maintained as a
server farm or server cluster where the servers are mounted on
racks in a server room or data center. The cluster 104 may also
be a collection of machines owned by different entities and
that are physically separate from each other at a distance.
Each node 104-a, 104-5, . . . 104-/, 104-i may include one or
more resource units, which are physical capacities to which
units of work (load-quanta) are assigned. For example, an
actual physical resource (node) may have multiple capacities,
each having its own load. The resource unit may be a storage
unit, e.g., disk and memory, a computing unit, e.g., CPU and
GPU, or a combination thereof. In this example, the cluster
104 is a highly distributed, scalable and elastic storage and
processing system, e.g., a cloud serving system, in which the
number of resource units may be dynamically changed, and
load may be dynamically shifted among resource units.

Users 110 may be of different types such as users con-
nected to the network via desktop connections (110-d), users
connecting to the network via wireless connections such as
through a laptop (110-¢), a handheld device (110-a), or a
built-in device in a motor vehicle (110-5). A user may access
to the cluster 104 by sending a request to the cluster 104 via
the network 108 and receiving a result from the cluster 104
through the network 108.

Inthis exemplary system 100, an operator 106, who may be
a network administrator, operator, developer, or customer of
the cluster 104, may configure the host 102 via an internal or
proprietary network connection to perform the work load
balancing of the cluster 104. The host 102, in response to the
configuration information such as load balancing policies and
model parameters, may collect or receive multi-dimensional
load metrics from all the resource units of the cluster 104 and
compute a load deviance for each resource unit based on a
global statistical load model and the real-time multi-dimen-
sional load metrics of the cluster 104. The load deviances may
beused by the host 102 to rank the resource units in the cluster

US 9,104,497 B2

5

104 and determine load balancing actions based on load bal-
ancing policies provided by the operator 106 to achieve
desired work load balancing objectives. Various global statis-
tical load models based on different statistical moments, such
as but not limited to mean, variance, median, percentile, etc.,
may be used to deduce the load balancing actions. In this
example, the load balancing policies may include a fuzzy
dynamic control mechanism that combines the execution of a
set of control actions according to a set of probabilities
assigned to pairs of resource unit groups in the ranking.

FIG. 1(b) presents another similarly system configuration
112 as what is shown in FIG. 1(a) except that the host 102 is
also one of the nodes of the cluster 104. That is, one machine
in the cluster 104 acts as both the host for controlling the work
load balancing and a node of the cluster 104. It is noted that
different configurations as illustrated in FIGS. 1(a) and 1(6)
can also be mixed in any manner that is appropriate for a
particular application scenario.

FIG. 2 shows a more detailed high level exemplary system
diagram of the system 100 shown in FIG. 1(a), according to
one application embodiment of the present teaching. In this
exemplary embodiment, the system 100 includes a host 102
and a plurality of cluster nodes 104-a . . . 104-7, each includ-
ing one or more resource units 202. The host 102 in this
example includes a dynamic load controller 204 and a load
assignment manager 206 operatively coupled to each other.
The dynamic load controller 204 in conjunction with the load
assignment manager 206 has a self-tuning capability based on
feedback at a larger time-scale. The dynamic load controller
204 is configured to dynamically determine a set of load
balancing actions based on real-time collecting or receiving
of multi-dimensional load metrics from the resource units
202-a,...,202-n ofthenodes 104-a, . . ., 104-r and based on
the fuzzy dynamic control mechanism. The load assignment
manager 206 may be a central assignment controller that
registers the mapping from work assignments to resource
units. The work assignments may exist in the form of load-
quanta that can be shifted and re-quantized by the load assign-
ment manager 206. The load assignment manager 206 is
configured to apply each of the determined load balancing
actions to the corresponding resource units 202-q, . . ., 202-n
of the nodes 104-a, . . . , 104-» in parallel. For example, the
resource units a-1 and n-1 may be storage units and their
associated load metric may be memory or disk usage; the
resource units a-2 and n-2 may be computing units and their
associated load metric may be CPU or GPU usage. The mul-
tiple-dimensional load metrics may also include, but are not
limited to, query length, latency, I/O usage, network usage,
and any other suitable load metric, each representing one
dimension of load metrics. The load balancing actions
include, for example, exchanging work between two resource
units or resource unit groups (load exchange), assigning work
to aresource unit, re-assigning work from one resource unit to
another resource unit, splitting work among a plurality of
resource units (load split), and keeping the current work
assignment (no further action).

FIG. 3 depicts an exemplary diagram of the dynamic load
controller 204, according to an embodiment of the present
teaching. In this example, the dynamic load controller 204
includes a sensing module 302, a computation module 304, a
ranking module 306, an action module 308, and an optimiza-
tion module 310. The sensing module 302 is configured to
receive a plurality of multi-dimensional load metrics from a
plurality of resource units in the distributed system 104. That
is, the sensing module 302 gathers the resource unit-specific
and cluster-wide load data in a predetermined time interval
(sampling frequency). In general, the smaller the granularity

10

15

20

25

30

35

40

45

50

55

60

65

6

and the greater the timeliness of data fed into the sensing
module 302, the greater the ability of the dynamic load con-
troller 204 to perform control actions. In this example, the
time interval for updating the load data is 5 minutes. For
example, each resource unit may collect one or more load
metrics for a 5-minute window and adds them to the previous
value by applying decay as follows:

Load metric=decay_{fractionxLoad metric+(/~decay_
fraction)xLoad metrics ,,,;,

M.

The default value of decay_{fraction may be, for example,
0.8. The slow decay is used to prevent short-term variation in
request rate. It is understood that, however, the time window
for sampling may not be predetermined or fixed in other
examples. In those examples, the sensing module 302 may
passively receive the load data and record the last time the
data arrives. As such, the sensing module 302 may calculate
each individual time difference and use it as the time interval
for the analysis performed by the dynamic load controller
204. In other words, in those examples, the time window may
vary from time to time, depending on how fast or slow the
load data arrives. As noted above, the plurality of multi-
dimensional load metrics received by the sensing module 302
include at least one of latency, query length, disk usage,
processing unit usage, memory usage, input/output unit
usage, network usage, and any combination thereof, each
representing one dimension of load metrics.

Inthis example, the computation module 304 is operatively
coupled to the sensing module 302. The computation module
304 is configured to compute a load deviance for each
resource unit based on a global statistical load model and the
received plurality of multi-dimensional load metrics. Various
global statistical load models based on different statistical
moments, such as but not limited to mean, variance, median,
percentile, etc., may be used to deduce the load balancing
actions.

FIG. 4(a) illustrates one exemplary global statistical load
model based on load mean and load variance. In this example,
in computing the load deviance for each resource unit, the
computation module 304 is configured to calculate a load
mean 404 and a load variance 406 of the distributed system
104 based on the received plurality of multi-dimensional load
metrics 402 (cluster-wide load data). Each multi-dimensional
load metric 403 for one resource unit umay be represented by
L,(t) as a function of time t. The load mean 404 and load
variance 406 may be represented by functions MEAN (L, (1))
and VARL(L (1)), respectively, over all resource units in a
given cluster 104 over some window of time At. As noted
above, the window of time At is a configurable model param-
eter and may be determined as part of the configuration infor-
mation provided by the operator 106. In one example, the
window of time At may be 5 minutes. The load mean 404 and
load variance 406 may be calculated using some kind of
decay model to dampen out variations over short periods of
time. It is understood that, in other examples, a different time
interval and/or decay model may be implemented to compute
the load mean 404 and load variance 406. Itis also understood
that, the time interval for sampling may not be predetermined
or fixed in other examples. In those examples, the sensing
module 302 may passively receive the load data and record
the last time the data arrives. As such, the sensing module 302
may calculate each individual time difference and use it as the
time interval for the analysis performed by the dynamic load
controller 204. In other words, in those examples, the time
window may vary from time to time, depending on how fast or
slow the load data arrives.

US 9,104,497 B2

7

Next, in this example, the computation module 304 is
further configured to determine a normal operation band
(NoB) 408 based on the calculated load mean 404 and load
variance 406. NoB 408 is a band of load variation for which
the dynamic load controller 204 may not take any load bal-
ancing action. In this example, NoB 408 may be defined
based on the cluster-wide load mean 404 and load variance
406, using 2c¢; to indicate the width of the band in units of
variance.

NoB=(MEAN;—c; VAR -, MEAN+¢; VAR;) Q).

MEAN +¢; VAR, is the upper bound of the band. Any
resource units that have a particular load metric above the
upper bound have high load value (overload). Similarly,
MEAN-c; VAR is the lower bound of the band. Any
resource units that have a particular load metric below the
lower bound have low load value (underload). In one
example, NoB 408 may be determined by the Gaussian dis-
tribution. For example, if c; equals to 1, then the band covers
68.26% of cases closest to the load mean 404. This choice
allows the operator 106 to select c, and associate an actual
meaning to it.

Further, in this example, the computation module 304 is
configured to determine a load deviance 412 for each of the
plurality of resource units based on NoB 408 and a last
extreme load metric 410 of the respective resource unit a
observed in the window of time At. In order to prevent actions
that are too hasty, the load deviance 412 is calculated for any
given resource unit as a measure of persistence in operating
outside NoB 408. For overloaded resource units, the calcula-
tion of load deviance 412 is as follows:

OverLoad,,, =Ar(L,(£)-(MEAN +c; VAR))+At

Lo (-Max(L,)) (-sign(L,(0)-L,(1-A1))2 A3)-

Where the term Max(L,,) refers to the last maximum load
metric of L (t) of a resource unit u received by the sensing
module 302. The computation module 304 continuously
determines a load deviance 412 for each resource unit. Thus,
if aresource unit returns to NoB 408 before this last inequality
condition is satisfied, the computation module 304 may stop
calculating Overl.oad,,, for that resource unit. For resource
units that go below NoB 408, a similar, complementary cal-
culation may be performed as follows:

UnderLoad,,, =At-(L () -(MEANz—c; VAR))+Ar

(L ()-MIN(L,))-(I+sign(L,(H)-L,(t-AD))/2 (4).

Where the term Min(L,) refers to the last minimum load
metric, of L, () of a resource unit u received by the sensing
module 302.

The above calculations can be done for all resource units
and an ordering among them can be created by its results. A
single equation can perform both calculations in one expres-
sion as follows:

LoadDeviance,=(/+sign((L,(f)-(MEAN+c;VARR)))
OverLoad,,,/2+(I-sign((L,(£)-(MEANz~c;

VARy)))UnderLoad, /2 (5).

FIG. 10(a) further illustrates one example of determining a
load deviance for a resource unit based on NoB and a last
extreme load metric of a resource unit. The load metric in one
dimension of a resource unit it changes with respect to time.
In a given sampling time window, the shaded area above the
base line defined by the load mean, load variance, and model
parameter c, is computed by integration, which corresponds
to At(L,()-(MEAN+c,VAR)) in Equation (3). As noted
above, the computation module 304 keeps track of the last-
observed extreme value of the load metric for each resource
unit and uses the last extreme load metric as a “differential

10

15

20

25

30

35

40

45

50

55

60

65

8

reward” for adjusting the integral area to obtain the load
deviance. The differential reward adjustment applies to
resource units that shed load on their own or lose load through
other processes (such as fewer client requests) in order to
prevent them from being tagged for a load balancing action
too early. Knowing the last extreme value is the same as
knowing the average differential of load since the last such
observation of such minima or maxima. The differential
reward adjustment corresponds to At(L,(t)-Max(L,))-(1-
sign(L,(t)-L,(t-At)))/2 in Equations (3) above. Although
FIG. 10(a) shows an example of an overloaded resource unit,
it is understood that the same idea can be applied to under-
loaded resource units in view of Equations (4) above. From
control theory perspective, the exemplary global statistical
load model shown in FIGS. 4 and 10(a) may be viewed as an
improved proportional-integral-derivative (PID) controller,
where NoB (baseline) represents the proportional aspect, the
integral shaded area represents the integral aspect, and the
differential reward adjustment represents the derivative
aspect of the classical PID controller.

FIG. 4(b) illustrates another exemplary global statistical
load model based on load median. In this example, in com-
puting the load deviance for each resource unit, the compu-
tation module 304 is configured to calculate a load median
414 of the distributed system 104 based on the received plu-
rality of multi-dimensional load metrics 402 (cluster-wide
load data). The computation module 304 is further configured
to determine a plurality of percentile bands 416 based on the
calculated load median 414 using approaches such as popu-
lation analysis. Referring now the FIG. 10(5), for example,
percentile bands may be defined by the calculated load
median and 10% percentile lines. It is understood that the
width of each percentile band and the total number of percen-
tile bands may vary in other examples. Referring back to FI1G.
4(b), in this example, the computation module 304 is config-
ured to determine a load deviance 418 for each of the plurality
of resource units based on at least some of the percentile
bands 416 and a last extreme load metric 410 of the respective
resource unit observed in the sampling time window.

FIG. 10(b) illustrates one example of determining a load
deviance for a resource unit based on percentile band and the
last extreme load metric of the resource unit. Instead of using
NoB determined by load mean and load variance as the base
line for integration, in this example, the percentile bands are
used to calculate the load integrals with respect to each per-
centile line (percentile boundary) in the time window. Sepa-
rate integrals may be calculated for each percentile band for a
given resource unit. Thus, the determined load variance for
each resource unit in this example may be represented by a
vector having multiple elements, each representing one inte-
gral value from one percentile band. Alternatively, the load
median (0 percentile line), instead of each percentile line,
may be used as a common base line for integration in other
examples. In those examples, instead of getting a vector, the
load deviance may be represented as a single value for each
resource unit. Nevertheless, similar to the example in FIG.
10(a), the computation module 304 keeps track of the last-
observed extreme value of the load metric for each resource
unit and uses the last extreme load metric 410 as a “differen-
tial reward” for adjusting the integral area(s) to obtain the load
deviance.

FIG. 4(c) illustrates still another exemplary global statisti-
cal load model based on load median. In this example, in
computing the load deviance for each resource unit, the com-
putation module 304 is configured to calculate a load median
414 of the distributed system 104 based on the received plu-
rality of multi-dimensional load metrics 402 (cluster-wide

US 9,104,497 B2

9

load data). The computation module 304 is further configured
to determine a plurality of percentile bands 416 based on the
calculated load median 414 using approaches such as popu-
lation analysis. Referring now the FIG. 10(5), for example,
percentiles bands may be defined by the calculated load
median and 10% percentile lines. Referring back to FIG. 4(¢),
in this example, the computation module 304 is configured to
determine a load deviance 420 for each of the plurality of
resource units based on at least some of the percentile bands
416 using a digit summation approach. Different from the
example in FIGS. 4(b) and 10(5) where each element in the
vector is an “accurate” estimate of the area occupied by the
load graph in a percentile band (with differential reward
adjustment), in this example, the value of each element is an
integer that is incremented every time the load dimension is
found within that band (without differential reward adjust-
ment). It is understood that, however, as the number of per-
centile bands increases, the difference in information content
between the examples in FIGS. 4(b) and 4(c) may gradually
disappear.

In this example, instead of using integrals adjusted by
differential rewards as shown in FIGS. 4(a) and 4(b), a load
percentile array, including a plurality of elements, is deter-
mined by incrementing an array element based on a percentile
band into which the load dimension falls. For example, a load
percentile array (e;, e, €,, €5, €4, €5, €, €4, €3, €;,) may include
eight elements e, to eg corresponding to —40%, -30%, -20%,
-10%, 10%, 20%, 30%, and 40% percentile bands, respec-
tively, and two elements e, and e, corresponding to lower and
higher bands capturing the long tails. It is understood that the
width of each percentile band and the total number of percen-
tile bands may vary in other examples, so may the number of
elements in the load percentile array. Depending on where the
load metric of the resource unit resides in the sampling tune
window, the corresponding element value in the load percen-
tile array is incremented. In other words, digit summation
approach may be applied to determine the load percentile
array. In one example, if the load metric of a resource unit is
in the 40% band, then ey is incremented eg=eg+1; if the load
metric of the resource unit changes to the ~40% band, then e,
is incremented e,=e, +1. In this example, the load percentile
array may be used as the load deviance for each resource unit
to determine the appropriate load balancing action.

Referring back to FIG. 3, in this example, the ranking
module 306 is operatively coupled to the computation module
304. The ranking module 306 is configured to rank a plurality
of'resource units in the distributed system based a plurality of
multi-dimensional load metrics determined from each of the
plurality of resource units. As the load deviance of each
resource unit has been determined by the computation mod-
ule 304, the ranking module 306 in this example ranks the
resource units in the distributed system 104 based on the load
deviances. As noted above, in each load dimension, the load
deviance may be determined in the form of a single value or
a vector/array depending on the selected global statistical
load model. In one example, if the load deviance is repre-
sented as a single value, the value may be used to rank the
resource units. In another example, if the load deviance is
represented as a vector/array having, multiple elements, the
ranking may be based on each element of the vector/array or
based on composite ordering of some or all elements in the
vector/array (a weight may be applied to each element in the
vector/array in composite ordering). As the load deviance
may be determined for a particular load dimension, each load
metric dimension may be independently ranked, including a
first load ranking based on a first load metric dimension, e.g.,
disk usage, and a second load ranking based on a second load

10

15

20

25

30

35

40

45

50

55

60

65

10

metric dimension, e.g., latency. In one example, the same
resource unit may be ranked differently based on different
load metric dimensions, and certain resource units may not
exist in a particular ranking if a corresponding load metric
dimension is not applicable. In another example, the indepen-
dent rankings may be transferred into a single ranking using
approaches such as single value decomposition approach if
needed. In ranking the plurality of resource units in the dis-
tributed system 104, the ranking module 306 may be config-
ured to remove any resource unit that was previously applied
to aload balancing action within a predetermined time period
(cooling period) from the ranking. The cooling period allows
resource unit metrics to stabilize before considering it for
another balancing action. Optionally, the ranking module 306
may also ignore resource units that were recently rebooted, or
if they report stale data.

Additionally or optionally, the computation module 304
may be further configured to determine one or more principal
load axes based on a distribution of the plurality of multi-
dimensional load metrics, and the ranking module 306 may
be further configured to rank the plurality of resource units in
the distributed system 104 based on the one or more principal
load axes and the plurality of multi-dimensional load metrics.
FIG. 12 illustrates one example of how to determine the
principal load axes. In this example, the multi-dimensional
load metrics include two load dimensions: CPU usage and [/O
usage for each resource unit. The distribution of the multi-
dimensional load metrics of the resources units may be
reflected in a coordinate system defined by the two load
dimensions as X and Y axes (original load metric axes). In this
example, two principal load axes may be derived by tech-
niques such as latent factor analysis, regression fitting, prin-
cipal vector analysis, etc., based on the multi-dimensional
load data distribution. A new coordinate system may be
defined by the derived principal load axes for ranking the
resource units based on the load deviance calculated using
any of the global statistical models noted above or based on
the multi-dimensional load metric of each resource unit. It is
understood that, the dimensions of the load metrics may be
less than or more than two and thus, the number of derived
principal load axes may be also less than or more than two in
other examples. Using principle load axis, rather than original
load metric axis, may be more effective for ranking and load
balancing in high dimensional load systems.

Referring back to FIG. 3, the ranking module 306 is further
configured to divide the plurality of resource units into a
plurality of resource unit groups based on the ranking of the
plurality of resource units. For example, the resource units in
the same group have the similar load deviance if the ranking
is determined based on the computed load deviances. As
shown in FIG. 5, adjacent two resource units in the load
ranking may be assigned into one resource unit group. In one
extreme example, each resource unit group may include only
one resource unit. In another extreme example, all the
resource units in the load ranking may be divided into two
resource unit groups. In one example, regardless of the total
number of resource unit groups, the number of resource units
in each group is the same. For example, all the resource units
in the load ranking may be evenly divided into two resource
unit groups from the middle of the ranking. That is, the top
half of resource units in the ranking are assigned into an
overload group (pool), and the bottom half of resource units in
the ranking are assigned into an underload group (pool). It is
understood that, in other examples, the number of resource
units in each resource unit group may be different.

Referring hack to FIG. 3, in this example, the action mod-
ule 308 is operatively coupled to the ranking module 306. The

US 9,104,497 B2

11

action module 308 is configured to form a plurality of pairs of
resource unit groups. Each pair of resource unit groups is
assigned with a probability of load balancing action. As
shown in FIG. 5, for each pair of resource unit groups, a first
resource unit group is selected from the top half of resource
unit groups in the ranking, and a second resource unit group
is selected from the bottom half of resource unit groups in the
ranking. In other words, a set of overloaded resource units and
a set of underloaded resource units form a pair of resource
unit groups. In one example as shown in FIG. 5, a relative
position of the first resource unit group with respect to the
middle of the ranking is the same as that of the second
resource unit group with respect to the middle of the ranking.
That is, quintile grouping is performed by the ranking module
306 in conjunction with the action module 308. For example,
the top-most resource unit group in the ranking and the bot-
tom-most resource unit group in the ranking, may form one
pair of resource unit groups, which may correspond to the top
and bottom 10% of resource units in the load ranking, respec-
tively. In other words, in each pair of resource unit groups, the
distances along the control metric (dimension) of each
resource unit groups are the same. The zero point of the
control metric is the middle of the load ranking.

In this example, probabilities (P) of load balancing actions
are different from each other among different pairs of
resource unit groups. The probability ofload balancing action
assigned to each pair of resource unit groups is determined
based on the relative positions the degree of overloading/
underloading). For example, a shown in FIG. 5, the probabil-
ity of load balancing action decreases as the relative position
gets closer to the middle of the ranking (P1>P2>. .. Pn). That
is, the probability assignment of a load balancing action may
approach zero as its distance along the control metric
approaches zero. The farther the distance is, in the quintile
groups, the more likely ofa load exchange occurs between the
pair of resource unit groups. For the pair of resource units that
has the largest distance, i.e., the top-most and bottom-most
resource unit groups in the ranking, the assigned probability
may be 1, meaning that a load balancing action, e.g., load
exchange, always occurs between this pair of resource unit
groups.

In this example, the action module 308 is further config-
ured to, for each pair of resource unit groups, determine a load
balancing action based on the assigned probability of load
balancing action. As noted above, the load balancing action
includes, for example, exchange work between two resource
units or resource unit groups (load exchange), assigning work
(load-quanta) to a resource unit, re-assigning work from one
resource unit to another resource unit, splitting work among a
plurality of resource units (e.g., re-partitioning data), and
keeping the current work assignment (no further action).

As shown in FIG. 6, the action module 308 may form a
plurality of pairs of resource unit groups and assign a prob-
ability to each pair based on their relative positions with
respect to the middle of the ranking (i.e., distance along the
metric). A load balancing action is determined based on the
assigned probability for each pair of resource unit groups. In
this example, the load balancing action may be load exchange
between the pair of resource unit groups. As the pair of
resource unit groups on the top and bottom of the ranking is
assigned with the highest probability (e.g., P1=1), load
exchange always occurs between these two resource unit
groups. On the other hand, as the pair of resource unit groups
closest to the middle ofthe ranking is assigned with the lowest
probability (e.g. close to zero), load exchange rarely occurs
between these two resource unit groups. The load assignment
manager 206 in this example is configured to perform the

10

15

20

25

30

35

40

45

50

55

60

65

12

determined plurality of load balancing actions in parallel for
each pair of resource unit groups.

Referring back to FIG. 3, in this example, the dynamic load
controller 204 may further include an optimization module
310 operatively coupled to the sensing module 302, the com-
putation module 304, the ranking module 306, and the action
module 308. The optimization module 310 is configured to
optimize the global statistical load model by updating the
configuration parameters of the global statistical load model
based on the received plurality of multi-dimensional load
metrics and a load balancing policy. The optimization module
310 may apply an automatic mechanism to learn and/or
search for the optimal values of various configuration param-
eters such as model parameters c,, c,, and W, load metric
collection frequencies, and paramedic smoothing factors. In
one example as shown in FIG. 11, in reinforcement learning,
the load metrics of the distributed system 104 and the balanc-
ing policy are combined with a feedback loop related to the
objective functions of the load balancing policy. In order to
learn optimal configuration parameters, desirable system
behavior with respect to the objective functions of the load
balancing policy may be determined and applied to the opti-
mization module 310. The desirable system behavior
includes, for example, availability and number of service
level agreement (SLA) misses across the installation under
control. Some initial values of the model parameters may be
selected based on the physical meaning of these parameters,
as given in the exemplary global statistical load models noted
above. Over time, updated configuration parameters may be
set in order to move the system towards the desirable system
behavior. One metric may be necessary is the “distance’ to the
desirable system behavior. For example, the distance metric
may be the load variance as a fraction of the load mean vs the
same, earlier, or difference between load variance as a frac-
tion of the load mean and the desired load variance as a
fraction of the load mean. In one example, gradient descent
techniques and the distance metric may be used to optimize
and update the configuration parameters. It is understood that
any other suitable optimization algorithm may be used by the
optimization module 310 to discover more optimal configu-
ration parameters.

FIG. 7 is a flowchart of an exemplary process in which
work load in a distributed system is balanced, according to an
embodiment of the present teaching. It will be described with
reference to FIG. 3. However, any suitable structure may be
employed. Beginning at block 702, a plurality of resource
units are ranked in the distributed system based a plurality of
multi-dimensional load metrics determined from each of the
plurality of resource units. For example, the ranking may be
made based on the load deviance computed for each resource
unit. At block 704, processing may continue where the plu-
rality of resource units are divided into a plurality of resource
unit groups based on the ranking of the plurality of resource
units. As described above, blocks 702, 704 may be performed
by the ranking module 306 of the dynamic load controller
204. At block 706, at least one pair of resource unit groups is
formed. Each of the at least one pair of resource unit groups is
assigned with a probability of load balancing action. Proceed-
ing to block 708, for each pair of resource unit groups, a load
balancing action is determined based on the assigned prob-
ability of load balancing action. As described above, blocks
706, 708 may be performed by the action module 308 of the
dynamic load controller 204.

FIG. 8(a) is a detailed flowchart of one exemplary process
in which the work load in a distributed system is balanced,
according to an embodiment of the present teaching. It will be
described with reference to FIG. 3. However, any suitable

US 9,104,497 B2

13

structure may be employed. Beginning at block 800, a plu-
rality of multi-dimensional load metrics are received from a
plurality of resource units in the distributed system. The plu-
rality of multi-dimensional load metrics may include at least
one of latency, query length, disk usage, processing unit
usage, memory usage, input/output unit usage, network
usage, and any combination thereof, each representing one
dimension of load metrics. As described above, this may be
performed by the sensing module 302 of the dynamic load
controller 204. At block 802, processing may continue where
aload mean and a load variance of the distributed system are
calculated based on the received plurality of multi-dimen-
sional load metrics. At block 804, a normal operation band is
determined based on the calculated load mean and load vari-
ance. At block 806, for each resource unit, the load deviance
is computed based on the normal operation band and a last
extreme load metric of the resource unit. The global statistical
model used in FIG. 8(a) is based on load mean and load
variance as noted above in FIG. 4(a). As described above,
blocks 802, 804, 806 may be performed by the computation
module 304 ofthe dynamic load controller 204. Proceeding to
block 808, the plurality of resource units in the distributed
system are ranked based on the load deviance of each
resource unit. At block 810, any resource unit that was pre-
viously applied to a load balancing action within a predeter-
mined time period is removed. At block 812, resource units
are divided into groups based on the ranking. As described
above, blocks 808, 810, 812 may be performed by the ranking
module 306 of the dynamic load controller 204. Proceeding to
block 814, one or more pairs of resource unit groups are
formed. At block 816, probability of load balancing action is
assigned to each pair of resource unit groups. At block 818,
load balancing actions are determined based on the assigned
probability for each pair of resource units groups. As
described above, blocks 814, 816, 818 may be performed by
the action module 308 of the dynamic load controller 204.
Proceeding to block 820, the determined load balancing
actions are performed in parallel. The at least one load bal-
ancing action may include at least one of exchanging work
between two resource units or resource unit groups, assigning
work to a resource unit, re-assigning work from one resource
unit to another resource unit, splitting work among a plurality
of resource units, and keeping the current work assignment
(no further action). As described above, this may be per-
formed by the load assignment manager 206. Optionally, at
block 822, the global statistical load model is optimized based
on the received plurality of multi-dimensional load metrics
and a load balancing policy. As described above, this may be
performed by the optimization module 310 of the dynamic
load controller 204.

FIG. 8(b) is a detailed flowchart of another exemplary
process in which the work load in a distributed system is
balanced as what is shown in FIG. 8(a) except that blocks 802,
804, 806 are replaced with blocks 824, 826, 828 as FIG. 8(b)
applies another global statistical model as shown in FIG. 4(b).
At block 824, a load median of the distributed system is
calculated based on the received plurality of multi-dimen-
sional load metrics. At block 826, a plurality of percentile
bands are determined based on the calculated load median. At
block 828, for each resource unit, the load deviance is com-
puted based on at least some of the plurality of percentile
bands and a last extreme load metric of the resource unit. As
described above, blocks 824, 826, 828 may be performed by
the computation module 304 of the dynamic load controller
204.

FIG. 8(¢) is a detailed flowchart of still another exemplary
process in which the work load in a distributed system is

10

15

20

25

30

35

40

45

50

55

60

65

14

balanced as what is shown in FIG. 8(5) except that block 828
is replaced with block 830 as FIG. 8(b) applies another global
statistical model as shown in FIG. 4(c). At block 830, for each
resource unit, the load deviance is computed based on at least
some of the plurality of percentile hands using digit summa-
tion. The load deviance is a load percentile array. As described
above, block 830 may be performed by the computation mod-
ule 304 of the dynamic load controller 204.

FIG. 8(d) is a detailed flowchart of yet another exemplary
process in which the work load in a distributed system is
balanced as what is shown in FIG. 8(a) except that blocks 802,
804, 806, 808 are replaced with blocks 832, 834, 836. At
block 832, aload deviance for each resource unit is calculated
based on a global statistical load model and the multi-dimen-
sional load metrics. At block 834, one or more principal load
axes are determined based on a distribution of the plurality of
multi-dimensional load metrics. As described above, blocks
832, 834 may be performed by the computation module 304
of'the dynamic load controller 204. At block 836, the plurality
of'resource units in the distributed system are ranked based on
the one or more principal load axes and the load deviance of
each resource unit. As described above, this may be per-
formed by the ranking module 306 of the dynamic load con-
troller 204.

To implement the present teaching, computer hardware
platforms may be used as the hardware platform(s) for one or
more of the elements described herein. The hardware ele-
ments, operating systems, and programming languages of
such computers are conventional in nature, and it is presumed
that those skilled in the art are adequately familiar therewith
to adapt those technologies to implement the processing
essentially as described herein. A computer with user inter-
face elements may be used to implement a personal computer
(PC) or other type of work station or terminal device,
although a computer may also act as a server if appropriately
programmed. It is believed that those skilled in the art are
familiar with the structure, programming, and general opera-
tion of such computer equipment and as a result the drawings
should be self-explanatory.

FIG. 9 depicts a general computer architecture on which
the present teaching can be implemented and has a functional
block diagram illustration of a computer hardware platform
that includes user interface elements. The computer may be a
general-purpose computer or a special purpose computer.
This computer 900 can be used to implement any components
of the work load balancing architecture as described herein.
Different components of the system, e.g., as depicted in
FIGS. 1-3 may be implemented on one or more computers
such as computer 900, via its hardware, software program,
firmware, or a combination thereof. Although only one such
computer is shown, for convenience, the computer functions
relating to work load balancing may be implemented in a
distributed fashion on a number of similar platforms, to dis-
tribute the processing load.

The computer 900, for example, includes COM ports 902
connected to and from a network connected thereto to facili-
tate data communications. The computer 900 also includes a
central processing unit (CPU) 904, in the form of one or more
processors, for executing program instructions. The exem-
plary computer platform includes an internal communication
bus 906, program storage and data storage of different forms,
e.g., disk 908, read only memory (ROM) 910, or random
access memory (RAM) 912, for various data files to be pro-
cessed and/or communicated by the computer, as well as
possibly program instructions to be executed by the CPU. The
computer 900 also includes an I/O component 914, support-
ing input/output flows between the computer and other com-

US 9,104,497 B2

15

ponents therein such as user interface elements 916. The
computer 900 may also receive programming and data via
network communications.

Hence, aspects of the method of balancing work load in a
distributed system, as outlined above, may be embodied in
programming. Program aspects of the technology may be
thought of as “products™ or “articles of manufacture” typi-
cally in the form of executable code and/or associated data
that is carried on or embodied in a type of machine readable
medium. Tangible non-transitory “storage” type media
include any or all of the memory or other storage for the
computers, processors or the like, or associated modules
thereof, such as various semiconductor memories, tape
drives, disk drives and the like, which may provide storage at
any time for the software programming.

All or portions of the software may at times be communi-
cated through a network such as the Internet or various other
telecommunication networks. Such communications, for
example, may enable loading of the software from one com-
puter or processor into another. Thus, another type of media
that may bear the software elements includes optical, electri-
cal, and electromagnetic waves, such as used across physical
interfaces between local devices, through wired and optical
landline networks and over various air-links. The physical
elements that carry such waves, such as wired or wireless
links, optical links or the like, also may be considered as
media bearing the software. As used herein, unless restricted
to tangible “storage” media, terms such as computer or
machine “readable medium” refer to any medium that par-
ticipates in providing instructions to a processor for execu-
tion.

Hence, a machine readable medium may take many forms,
including but not limited to, a tangible storage medium, a
carrier wave medium or physical transmission medium. Non-
volatile storage media include, for example, optical or mag-
netic disks, such as any of the storage devices in any compu-
ter(s) or the like, which may be used to implement the system
or any of its components as shown in the drawings. Volatile
storage media include dynamic memory, such as a main
memory of such a computer platform. Tangible transmission
media include coaxial cables; copper wire and fiber optics,
including the wires that form a bus within a computer system.
Carrier-wave transmission media can take the form of electric
or electromagnetic signals, or acoustic or light waves such as
those generated during radio frequency (RF) and infrared
(IR) data communications. Common forms of computer-
readable media therefore include for example: a floppy disk,
a flexible disk, hard disk, magnetic tape, any other magnetic
medium, a CD-ROM, DVD or DVD-ROM, any other optical
medium, punch cards paper tape, any other physical storage
medium with patterns of holes, a RAM, a PROM and
EPROM, a FLASH-EPROM, any other memory chip or car-
tridge, a carrier wave transporting data or instructions, cables
or links transporting such a carrier wave, or any other medium
from which a computer can read programming code and/or
data. Many of these forms of computer readable media may
be involved in carrying one or more sequences of one or more
instructions to a processor for execution.

Those skilled in the art will recognize that the present
teachings are amenable to a variety of modifications and/or
enhancements. For example, although the implementation of
various components described above may be embodied in a
hardware device, it can also be implemented as a software
only solution—e.g., an installation on an existing server. In
addition, the units of'the host and the client nodes as disclosed
herein can be implemented as a firmware, firmware/software
combination, firm ware/hard ware combination, or a hard-
ware/firmware/software combination.

While the foregoing has described what are considered to
be the best mode and/or other examples, it is understood that

40

45

55

65

16

various modifications may be made therein and that the sub-
ject matter disclosed herein may be implemented in various
forms and examples, and that the teachings may be applied in
numerous applications, only some of which have been
described herein. It is intended by the following claims to
claim any and all applications, modifications and variations
that fall within the true scope of the present teachings.

I claim:
1. A method, implemented on at least one machine each
having at least one processor, storage, and a communication
platform connected to a network for balancing work load in a
distributed system, comprising the steps of:
ranking a plurality of resource units in the distributed sys-
tem based a plurality of multi-dimensional load metrics
determined from each of the plurality of resource units;

dividing the plurality of resource units into a plurality of
resource unit groups based on the ranking of the plural-
ity of resource units;
forming at least one pair of resource unit groups, wherein
each of the at least one pair of resource unit groups is
assigned with a probability of load balancing action; and

for each pair of resource unit groups, determining a load
balancing action based on the assigned probability of
load balancing action, wherein

for each pair of resource unit groups, a first resource unit

group is selected from top half of resource unit groups in
the ranking, and a second resource unit group is selected
from bottom half of resource unit groups in the ranking.

2. The method of claim 1, further comprising the step of
performing the determined plurality ofload balancing actions
in parallel for each pair of resource unit groups.

3. The method of claim 1, wherein the load balancing
action includes at least one of:

exchanging work between two resource units or resource

unit groups,

assigning work to a resource unit,

re-assigning work from one resource unit to another

resource unit,

splitting work among a plurality of resource units, and

keeping the current work assignment.

4. The method of claim 1, wherein probabilities of load
balancing actions are different from each other among differ-
ent pairs of resource unit groups.

5. The method of claim 1, wherein a relative position of the
first resource unit group with respect to a middle of the rank-
ing is the same as that of the second resource unit group with
respect to the middle of the ranking.

6. The method of claim 5, wherein the probability of load
balancing action assigned to each pair of resource unit groups
is determined based on the relative positions.

7. The method of claim 6, wherein the probability of load
balancing action decreases as the relative positions get closer
to the middle of the ranking.

8. The method of claim 1, wherein the plurality of multi-
dimensional load metrics include at least one of latency,
query length, storage usage, processing unit usage, memory
usage, input/output unit usage, and any combination thereof.

9. A system for balancing work load in a distributed sys-
tem, comprising a load controller implemented on at least one
processor, the load controller comprising:

a ranking module configured to:

rank a plurality of resource units in the distributed sys-
tem based a plurality of multi-dimensional load met-
rics determined from each of the plurality of resource
units, and

divide the plurality of resource units into a plurality of
resource unit groups based on the ranking of the plu-
rality of resource units; and

US 9,104,497 B2

17

an action module configured to:
form a plurality of pairs of resource unit groups, wherein
each pair of resource unit groups is assigned with a
probability of load balancing action, and
for each pair of resource unit groups, determine a load
balancing action based on the assigned probability of
load balancing action, wherein

for each pair of resource unit groups, a first resource unit

group is selected from top half of resource unit groups in
the ranking, and a second resource unit group is selected
from bottom half of resource unit groups in the ranking.

10. The system of claim 9, further comprising a load
assignment manager operatively coupled to the load control-
ler and configured to perform the determined plurality of load
balancing actions in parallel for each pair of resource unit
groups.

11. The system of claim 9, wherein the load balancing
action includes at least one of:

exchanging work between two resource units or resource

unit groups,

assigning work to a resource unit,

re-assigning work from one resource unit to another

resource unit,

splitting work among a plurality of resource units, and

keeping the current work assignment.

12. The system of claim 9, wherein probabilities of load
balancing actions are different from each other among differ-
ent pairs of resource unit groups.

13. The system of claim 9, wherein a relative position of the
first resource unit group with respect to a middle of the rank-
ing is the same as that of the second resource unit group with
respect to the middle of the ranking.

14. The system of claim 13, wherein the probability of load
balancing action assigned to each pair of resource unit groups
is determined based on the relative positions.

5

10

20

25

30

18

15. The system of claim 14, wherein the probability of load
balancing action decreases as the relative positions get closer
to the middle of the ranking.
16. The system of claim 9, wherein the plurality of multi-
dimensional load metrics include at least one of latency,
query length, storage usage, processing unit usage, memory
usage, input/output unit usage, and any combination thereof.
17. A machine-readable tangible and non-transitory
medium having information recorded thereon for balancing
work load in a distributed system, wherein the information,
when read by the machine, causes the machine to perform the
following:
ranking a plurality of resource units in the distributed sys-
tem based a plurality of multi-dimensional load metrics
determined from each of the plurality of resource units;

dividing the plurality of resource units into a plurality of
resource unit groups based on the ranking of the plural-
ity of resource units;
forming at least one pair of resource unit groups, wherein
each of the at least one pair of resource unit groups is
assigned with a probability of load balancing action; and

for each pair of resource unit groups, determining a load
balancing action based on the assigned probability of
load balancing action, wherein

for each pair of resource unit groups, a first resource unit

group is selected from top half of resource unit groups in
the ranking, and a second resource unit group is selected
from bottom half of resource unit groups in the ranking.

18. The medium of claim 17, further comprising the step of
performing the determined load balancing action in parallel
for each pair of resource unit groups.

#* #* #* #* #*

